ANDROSTENEDIONE ELISA

40-056-205044
RESEARCH USE

GenWay Biotech, Inc. 6777 Nancy Ridge Drive San Diego, CA 92121 - Tel: (858) 458-0866 - Fax: (858)458-0833

1 INTRODUCTION
The GenWay Androstenedione Enzyme Immunoassay Kit provides materials for the quantitative determination of Androstenedione in serum and EDTA plasma.
This assay is intended for research use only.
The steroid hormone Androstenedione is one of the main androgens, besides Testosterone and Dehydroepiandrosterone. Testosterone, the most important biological active androgen, is derived from peripheral enzymatic conversion of Androstenedione.
In males, androgens are secreted primarily by the Leydig cells of the testes, to some degree also in the adrenal cortex. In females, the androgens are secreted mainly in the adrenal glands and in the ovary. Around 10% of the androgens are derived from peripheral conversion, mainly of DHEA. Androstenedione and Testosterone show high diurnal variability. The highest levels are measured in the morning. At the age of puberty serum androstenedione levels rise, after menopause they decline again. High androstenedione levels are measured during pregnancy.

2 PRINCIPLE OF THE TEST
The GenWay Androstenedione ELISA Kit is a solid phase enzyme-linked immunosorbent assay (ELISA), based on the principle of competitive binding.
The microtiter wells are coated with an antibody directed towards an antigenic site on the Androstenedione molecule. Endogenous Androstenedione of a sample competes with an Androstenedione horseradish peroxidase conjugate for binding to the coated antibody. After incubation the unbound conjugate is washed off. The amount of bound peroxidase conjugate is reverse proportional to the concentration of Androstenedione in the sample. After addition of the substrate solution, the intensity of colour developed is reverse proportional to the concentration of Androstenedione in the sample.

3 PRECAUTIONS
- This kit is for research use only.
- For information on hazardous substances included in the kit please refer to Material Safety Data Sheets.
- All reagents of this test kit which contain human serum or plasma have been tested and confirmed negative for HIV I/II, HBsAg and HCV by FDA approved procedures. All reagents, however, should be treated as potential biohazards in use and for disposal.
- Before starting the assay, read the instructions completely and carefully. Use the valid version of the package insert provided with the kit. Be sure that everything is understood.
- The microplate contains snap-off strips. Unused wells must be stored at 2C to 8C in the sealed foil pouch and used in the frame provided.
- Pipetting of samples and reagents must be done as quickly as possible and in the same sequence for each step.
- Use reservoirs only for single reagents. This especially applies to the substrate reservoirs. Using a reservoir for dispensing a substrate solution that had previously been used for the conjugate solution may turn solution colored. Do not pour reagents back into vials as reagent contamination may occur.
- Mix the contents of the microplate wells thoroughly to ensure good test results. Do not reuse microwells.
- Do not let wells dry during assay; add reagents immediately after completing the rinsing steps.
- Allow the reagents to reach room temperature (21 to 26°C) before starting the test. Temperature will affect the absorbance readings of the assay. However, values for the patient samples will not be affected.
- Some reagents contain Proclin 300, BND and or MIT as preservatives. In case of contact with eyes or skin, flush immediately with water.
- TMB substrate has an irritant effect on skin and mucosa. In case of possible contact, wash eyes with an abundant volume of water and skin with soap and abundant water. Wash contaminated objects before reusing them. If inhaled, take the person to open air.
- Avoid contact with Stop Solution containing 0.5 M H2SO4. It may cause skin irritation and burns.
- Never pipet by mouth and avoid contact of reagents and specimens with skin and mucous membranes.
- Do not smoke, eat, drink or apply cosmetics in areas where specimens or kit reagents are handled.
- Wear disposable latex gloves when handling specimens and reagents. Microbial contamination of reagents or specimens may give false results.
- Handling should be in accordance with the procedures defined by an appropriate national biohazard safety guideline or regulation.
- Do not use reagents beyond expiry date as shown on the kit labels.
- All indicated volumes have to be performed according to the protocol. Optimal test results are only obtained when using calibrated pipettes and microtiterplate readers.
- Do not mix or use components from kits with different lot numbers. It is advised not to exchange wells of different plates even of the same lot. The kits may have been shipped or stored under different conditions and the binding characteristics of the plates may result slightly different.

Catalogue No: 40-056-205044

For research use only; not for in vitro diagnostic use.
4 KIT COMPONENTS

4.1 Contents of the Kit

1. **Microtiterwells**, 12x8 (break apart) strips, 96 wells
 Wells coated with a polyclonal anti-Androstenedione antibody

2. **Calibrators N= 0 to 5**, 6 vials, 1 mL, ready to use
 See exact values on vial labels
 Conversion: ng/mL x 3.492 = nmol/l, contain non-mercury preservative

3. **Enzyme Conjugate**, 1 vial, 25 mL, ready to use
 Androstenedione conjugated to horseradish Peroxidase, contains non-mercury preservative

4. **Substrate Solution**, 1 vial, 25 mL, ready to use
 TMB

5. **Stop Solution**, 1 vial, 14 mL, ready to use
 contains 0.5M H₂SO₄
 Avoid contact with the stop solution. It may cause skin irritations and burns.

6. **Wash Solution**, 1 vial, 30 mL (40X concentrated)
 see „Preparation of Reagents“

7. **Control Low & High**, 2 vials, 1.0 mL each, ready to use;
 For control values and ranges please refer to vial label or QC-Datasheet.
 Contain non-mercury preservative.

4.1.1 Equipment and material required but not provided

- A microtiter plate calibrated reader (450±10 nm)
- Calibrated variable precision micropipettes.
- Absorbent paper.
- Distilled water.
- Timer.
- Semi-logarithmic graph paper or software for data reduction

4.2 Storage and stability of the Kit

When stored at 2-8°C unopened reagents will retain reactivity until expiration date. Do not use reagents beyond this date. Opened reagents must be stored at 2-8°C. Microtiter wells must be stored at 2-8°C. Once the foil bag has been opened, care should be taken to close it tightly again. Opened kits retain activity for three months if stored as described above.

4.3 Preparation of Reagents

Allow all reagents and required number of strips to reach room temperature prior to use.

Wash Solution
Add deionized water to the 40X concentrated Wash Solution.
Dilute 50 mL of concentrated Wash Solution with 1170 mL deionized water to a final volume of 1200 mL.
The diluted Wash Solution is stable for 2 weeks at room temperature.

4.4 Disposal of the Kit

The disposal of the kit must be made according to the national regulations. Special information for this product is given in the Material Safety Data Sheets.

For research use only; not for in vitro diagnostic use.
5 SPECIMEN
Serum or EDTA plasma can be used in this assay.

Do not use Heparin or Citrate plasma. Heparin plasma leads to slightly reduced values. For citrate plasma the results are significant increased. Do not use haemolytic, icteric or lipaemic specimens.

Please note: Samples containing sodium azide should not be used in the assay.

5.1 Specimen Collection

Serum:
Collect blood by venipuncture (e.g. Sarstedt Monovette for serum), allow to clot, and separate serum by centrifugation at room temperature. Do not centrifuge before complete clotting has occurred. Individuals receiving anticoagulant therapy may require increased clotting time.

Plasma:
Whole blood should be collected into centrifuge tubes containing anti coagulant and centrifuged immediately after collection. (E.g. Sarstedt Monovette for EDTA plasma)

5.2 Specimen Storage
Specimens should be capped and may be stored for up to 5 days at 2-8°C prior to assaying. Specimens held for a longer time should be frozen only once at -20°C prior to assay. Thawed samples should be inverted several times prior to testing.

5.3 Specimen Dilution
If in an initial assay, a serum specimen is found to contain more than the highest standard, the specimens can be diluted 10-fold or 100 fold with Calibrator0 and reassayed as described in Assay Procedure.

For the calculation of the concentrations this dilution factor has to be taken into account.

Example:

a) dilution 1:10: 10 µL Serum + 90 µL Calibrator0 (mix thoroughly)
b) dilution 1:100: 10 µL dilution a) 1:10 + 90 µL Calibrator0 (mix thoroughly).

6 TEST PROCEDURE

6.1 General Remarks
– All reagents and specimens must be allowed to come to room temperature before use. All reagents must be mixed without foaming.
– Once the test has been started, all steps should be completed without interruption.
– Use new disposal plastic pipette tips for each calibrator, control or sample in order to avoid cross contamination.
– Absorbance is a function of the incubation time and temperature. Before starting the assay, it is recommended that all reagents are ready, caps removed, all needed wells secured in holder, etc. This will ensure equal elapsed time for each pipetting step without interruption.
– As a general rule the enzymatic reaction is linearly proportional to time and temperature.

For research use only; not for in vitro diagnostic use.
6.2 Assay Procedure
Each run must include a calibration curve.

1. Secure the desired number of Microtiterwells in the holder.
2. Dispense 20 µL of each Calibrators, controls and samples with new disposable tips into appropriate wells.
3. Dispense 200 µL Enzyme Conjugate into each well.
4. Thoroughly mix for 10 seconds. It is important to have a complete mixing in this step.
5. Incubate for 60 minutes at room temperature.
6. Briskly shake out the contents of the wells.
Rinse the wells 4 times with diluted Wash Solution (400 µL per well). Strike the wells sharply on absorbent paper to remove residual droplets.

Important note:
The sensitivity and precision of this assay is markedly influenced by the correct performance of the washing procedure!
7. Add 200 µL of Substrate Solution to each well.
8. Incubate for 30 minutes at room temperature.
9. Stop the enzymatic reaction by adding 100 µL of Stop Solution to each well.
10. Read the OD at 450±10 nm with a microtiter plate reader within 10 minutes after adding the Stop Solution.

6.3 Calculation of Results

1. Calculate the average absorbance values for each set of calibrators, controls and samples.
2. Construct a calibration curve by plotting the mean absorbance obtained from each calibrator against its concentration with absorbance value on the vertical (Y) axis and concentration on the horizontal (X) axis.
3. Using the mean absorbance value for each sample determine the corresponding concentration from the calibration curve.
4. Automated method: The results in the IFU have been calculated automatically using a 4 PL (4 Parameter Logistics) curve fit. 4 Parameter Logistics is the preferred method. Other data reduction functions may give slightly different results.
5. The concentration of the samples can be read directly from this calibration curve. Samples with concentrations higher than that of the highest calibrator have to be further diluted. For the calculation of the concentrations this dilution factor has to be taken into account.

6.3.1 Example of Typical Calibration curve

The following data is for demonstration only and **cannot** be used in place of data generations at the time of assay.

<table>
<thead>
<tr>
<th>Calibrator</th>
<th>Optical Units (450 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator0</td>
<td>0 ng/mL</td>
</tr>
<tr>
<td>Calibrator1</td>
<td>0.1 ng/mL</td>
</tr>
<tr>
<td>Calibrator2</td>
<td>0.3 ng/mL</td>
</tr>
<tr>
<td>Calibrator3</td>
<td>1.0 ng/mL</td>
</tr>
<tr>
<td>Calibrator4</td>
<td>3.0 ng/mL</td>
</tr>
<tr>
<td>Calibrator5</td>
<td>10.0 ng/mL</td>
</tr>
</tbody>
</table>

7 EXPECTED VALUES
It is strongly recommended that each laboratory should determine its own normal and abnormal values.

In a study conducted with apparently normal healthy adults, using the GenWay Androstenedione ELISA the following values are observed:

Females

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>n</th>
<th>Mean (ng/mL)</th>
<th>2.5th Percentile (ng/mL)</th>
<th>94.5th Percentile (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>29</td>
<td>0.39</td>
<td>0.02</td>
<td>0.86</td>
</tr>
<tr>
<td>11-17</td>
<td>17</td>
<td>1.36</td>
<td>0.25</td>
<td>2.78</td>
</tr>
<tr>
<td>18-53</td>
<td>66</td>
<td>2.22</td>
<td>0.75</td>
<td>3.89</td>
</tr>
<tr>
<td>54-82</td>
<td>26</td>
<td>1.32</td>
<td>0.35</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Males

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>n</th>
<th>Mean (ng/mL)</th>
<th>2.5th Percentile (ng/mL)</th>
<th>94.5th Percentile (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>34</td>
<td>0.40</td>
<td>0.01</td>
<td>1.31</td>
</tr>
<tr>
<td>11-17</td>
<td>16</td>
<td>1.75</td>
<td>0.33</td>
<td>3.30</td>
</tr>
<tr>
<td>18-53</td>
<td>36</td>
<td>2.15</td>
<td>0.45</td>
<td>4.20</td>
</tr>
<tr>
<td>54-82</td>
<td>44</td>
<td>1.95</td>
<td>0.30</td>
<td>3.93</td>
</tr>
</tbody>
</table>

The results alone should not be the only reason for any therapeutic consequences. The results should be correlated to other clinical observations and diagnostic test.

Catalog No: 40-056-205044

For research use only; not for in vitro diagnostic use.
9 QUALITY CONTROL

Good laboratory practice requires that controls be run with each calibration curve. A statistically significant number of controls should be assayed to establish mean values and acceptable ranges to assure proper performance. It is recommended to use control samples according to state and federal regulations. The use of control samples is advised to assure the day to day validity of results. Use controls at both normal and pathological levels. The values and ranges stated on the QC sheet always refer to the current kit lot and should be used for direct comparison of the results. In this case, please check the following technical areas: Pipetting and timing devices; photometer, expiration dates of reagents, storage and incubation conditions, aspiration and washing methods.

9 ASSAY CHARACTERISTICS

9.1 Assay Dynamic Range
The range of the assay is between 0.019 – 10 ng/mL.

9.2 Specificity of Antibodies (Cross Reactivity)
The following substances were tested for cross-reactivity of the assay:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Crossreactivity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androstenedione</td>
<td>100</td>
</tr>
<tr>
<td>Androsterone</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cortisol</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Dihydrotestosterone</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Dihydroepiandrosterone</td>
<td>0.01</td>
</tr>
<tr>
<td>Estradiol</td>
<td>< 0.01</td>
</tr>
<tr>
<td>16-Epiestradiol</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Estradiol</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Estradiol-3-glucuronide</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Estradiol-16-glucuronide</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Estradiol-16-sulfate</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Estrone</td>
<td>< 0.01</td>
</tr>
<tr>
<td>17a-Pregnenolone</td>
<td>< 0.01</td>
</tr>
<tr>
<td>17OH-Progesterone</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Progesterone</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Testosterone</td>
<td>0.01</td>
</tr>
</tbody>
</table>

9.3 Analytical Sensitivity
The analytical sensitivity was calculated from the mean minus two standard deviations of twenty (20) replicate analyses of Calibrator0 and was found to be 0.019 ng/mL.

9.4 Precision
The within assay variability (Intra Assay) and between assay variability (Inter Assay) are shown below:

1.1.1 Intra Assay Variation

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Mean (ng/mL)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>1.2</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.7</td>
<td>9.2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>8.0</td>
<td>6.9</td>
</tr>
</tbody>
</table>

1.1.2 Inter Assay Variation

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Mean (ng/mL)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>4.3</td>
<td>8.3</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>3.0</td>
<td>8.1</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>1.0</td>
<td>8.7</td>
</tr>
</tbody>
</table>

1.1.3 Inter-Lot
The inter-lot variation was determined by repeated measurements of 3 samples in 6 replicates per sample with 3 different kit lots:

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Mean Lot 1 (ng/mL)</th>
<th>Mean Lot 2 (ng/mL)</th>
<th>Mean Lot 3 (ng/mL)</th>
<th>Inter Lot CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>5.77</td>
<td>5.25</td>
<td>4.85</td>
<td>8.7</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>3.43</td>
<td>3.17</td>
<td>3.50</td>
<td>5.2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>7.12</td>
<td>7.42</td>
<td>6.63</td>
<td>5.6</td>
</tr>
</tbody>
</table>

For research use only; not for in vitro diagnostic use.
9.5 Recovery

Samples have been spiked by adding Androstenedione solutions with known concentrations in a 1:1 ratio. The expected values were calculated by addition of half of the values determined for the undiluted samples and half of the values of the known solutions. The % Recovery has been calculated by multiplication of the ratio of the measurements and the expected values with 100.

<table>
<thead>
<tr>
<th>Concentration [ng/mL]</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.47</td>
<td>1.43</td>
<td>1.95</td>
</tr>
<tr>
<td>Average Recovery</td>
<td>106.6</td>
<td>102.6</td>
<td>104.0</td>
</tr>
<tr>
<td>Range of Recovery [%]</td>
<td>from 96.4 to 112.9</td>
<td>from 99.1 to 108.6</td>
<td>from 93.3 to 114.0</td>
</tr>
</tbody>
</table>

9.6 Linearity

<table>
<thead>
<tr>
<th>Concentration [ng/mL]</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.22</td>
<td>4.70</td>
<td>7.20</td>
</tr>
<tr>
<td>Average Recovery</td>
<td>97.0</td>
<td>96.3</td>
<td>93.4</td>
</tr>
<tr>
<td>Range of Recovery [%]</td>
<td>from 92.3 to 102.9</td>
<td>from 91.6 to 101.3</td>
<td>from 86.7 to 105.6</td>
</tr>
</tbody>
</table>

10 LIMITATIONS OF USE

10.1 Interfering Substances

Haemoglobin (up to 4 mg/mL), Bilirubin (up to 0.5 mg/mL) and Triglyceride (up to 30 mg/mL) have no influence on the assay result.

10.2 Drug Interferences

Until today no substances (drugs) are known to us, which have an influence to the measurement of Androstenedione in a sample.

10.3 High-Dose-Hook Effect

No hook effect was observed in this test.

11 LEGAL ASPECTS

11.1 Reliability of Results

The test must be performed exactly as per the manufacturer's instructions for use. Moreover the user must strictly adhere to the rules of GLP (Good Laboratory Practice) or other applicable national standards and/or laws. This is especially relevant for the use of control reagents. It is important to always include, within the test procedure, a sufficient number of controls for validating the accuracy and precision of the test. The test results are valid only if all controls are within the specified ranges and if all other test parameters are also within the given assay specifications. In case of any doubt or concern please contact GenWay.

Catalog No: 40-056-205044

For research use only; not for in vitro diagnostic use.
11.2 Therapeutic Consequences
Therapeutic consequences should never be based on laboratory results alone even if all test results are in agreement with the items as stated under point 11.1. Any laboratory result is only a part of the total picture of a sample. Only in cases where the laboratory results are in acceptable agreement with the overall picture of the sample should therapeutic consequences be derived. The test result itself should never be the sole determinant for deriving any therapeutical consequences.

11.3 Liability
Any modification of the test kit and/or exchange or mixture of any components of different lots from one test kit to another could negatively affect the intended results and validity of the overall test. Such modification and/or exchanges invalidate any claim for replacement. Claims submitted due to customer misinterpretation of laboratory results subject to point 11.2. are also invalid. Regardless, in the event of any claim, the manufacturer’s liability is not to exceed the value of the test kit. Any damage caused to the test kit during transportation is not subject to the liability of the manufacturer.

12 REFERENCES