REFERENCES


10-30-06

1. 1 Microwell coated with Mitochondrial antigen 12x8x1
2. Sample Diluent: 1 bottle (ready to use) 22 ml
3. Calibrator: 1 Vial (ready to use) 1.5ml
4. Positive Control: 1 vial (ready to use) 1.5ml
5. Negative Control: 1 vial (ready to use) 1.5ml
6. Enzyme conjugate: 1 bottle (ready to use) 12ml
7. TMB Substrate: 1 bottle (ready to use) 12ml
8. Stop Solution: 1 bottle (ready to use) 12ml
9. Wash concentrate 20X: 1 bottle 25ml

Warning
All of Bio-Quant ELISA Kits have not been tested for clinical use and are not approved in the United States by the FDA for diagnostic clinical use. They are components or reagents made solely for research use, further manufacturing and export use. It is the commitment of Bio-Quant customers to receive its products solely for the purpose of exportation or research, and not for the purposes of clinical diagnostic use.

BIO-QUANT DOES NOT MAKE ANY OTHER WARRANTY OR REPRESENTATION WHATSOEVER, WHETHER EXPRESS OR IMPLIED, WITH RESPECT TO THESE PRODUCTS. IN PARTICULAR Bio-Quant, INC. DOES NOT MAKE ANY WARRANTY OF SUITABILITY, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OF ANY PRODUCT.

INTENDED USE
The Mitochondrial IgG ELISA test system is an enzyme linked immunosorbent assay (ELISA) for the detection of IgG class antibody to Mitochondrial in human serum or plasma.

SUMMARY AND EXPLANATION
Mitochondrial Antibodies (MA) are directed against the E2 subunit of the pyruvate dehydrogenase enzyme complex located at the inner mitochondrial membrane (PDC-E2), the E2 subunit of the branched chain 2-oxo acid dehydrogenase complex (BCAOADC-E2), the E2 subunit of the 2-oxo-glutarate dehydrogenase complex (OGDCE2), protein X, and PDC-Ela and PDC-E1. MA are found in ~95% of patients with primary biliary cirrhosis (PBC). MA in low titers are common in chronic active hepatitis and their presence does not preclude response to corticosteroids. MA disappear in about one month after orthotopic liver transplantation (OLT) and decrease with cyclosporine treatment which might be useful in PBC. MA are found in <1% of apparently healthy Caucasoid adults. Approximately 3% of patients with PBC have scleroderma, usually of the CREST syndrome variety. In addition, MA reactive with the PDC-E2 complex are found in some patients with CREST or diffuse scleroderma, sometimes in the absence of overt liver disease. Scleroderma typically precedes PBC in those patients with both diseases. Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate

PRINCIPLE OF THE TEST
Diluted patient serum is added to wells coated with purified antigen. IgG specific antibody, if present, binds to the antigen. All unbound materials are washed away and the enzyme conjugate is added to bind to the antibody-antigen complex, if present. Excess enzyme conjugate is washed off and substrate is added. The plate is incubated to allow the hydrolysis of the substrate by the enzyme. The intensity of the color generated is proportional to the amount of IgG specific antibody in the sample.
2. Keep microwells sealed in a dry bag with desiccants.
3. The reagents are stable until expiration of the kit.
4. Do not expose test reagents to heat, sun or strong light.

WARNINGS AND PRECAUTIONS
1. Potential biohazardous materials: The calibrator and controls contain human source components which have been tested and found non-reactive for hepatitis B surface antigen as well as HIV antibody with FDA licensed reagents. However, there is no test method that can offer complete assurance that HIV, Hepatitis B virus or other infectious agents are absent. These reagents should be handled at the Biosafety Level 2, as recommended in the Centers for Disease Control/National Institutes of Health manual, "Biosafety in Microbiological and Biomedical Laboratories." 1984.
2. Optimal results will be obtained by strict adherence to the test protocol. Precise pipetting as well as following the exact time and temperature requirements is essential.
3. Do not pipette by mouth. Do not smoke, eat, or drink in the areas in which specimens or kit reagents are handled.
4. The components in this kit are intended for use as an integral unit. The components of different lots should not be mixed.
5. Control sera and sample diluent contain preserved with sodium azide. Sodium azide may react with lead and copper plumbing to form explosive metal azide. On disposal, flush with a large volume of water.

SPECIMEN COLLECTION AND HANDLING
1. Collect blood specimens and separate the serum.
2. Specimens may be refrigerated at 2–8 °C for up to seven days or frozen for up to six months. Avoid repetitive freezing and thawing.

REAGENT PREPARATION
Prepare 1X Wash buffer by adding the contents of the bottle (25 ml, 20X) to 475 ml of distilled or deionized water. Store at room temperature (18-26 °C).

PREPARATION FOR ASSAY
Bring all specimens and kit reagents to room temperature (18-26 °C) and gently mix.

ASSAY PROCEDURE
1. Place the desired number of coated strips into the holder.
2. Prepare 1:2 dilution of test samples, by adding 10 μl of the sample to 200 μl of sample diluent. Mix well.
3. Dispense 100 μl of diluted sera, calibrator and controls into the appropriate wells. For the reagent blank, dispense 100μl sample diluent in 1A well position. Tap the holder to remove air bubbles from the liquid and mix well. Incubate for 20 minutes at room temperature.
4. Remove liquid from all wells. Wash wells three times with 300 μl of 1X wash buffer. Blot on absorbance paper or paper towel.
5. Dispense 100 μl of enzyme conjugate to each well and incubate for 20 minutes at room temperature.
6. Remove enzyme conjugate from all wells. Wash wells three times with 300 μl of 1X wash buffer. Blot on absorbance paper or paper towel.
7. Dispense 100 μl of substrate and incubate for 10 minutes at room temperature.
8. Add 100 μl of stop solution.
9. Read O.D. at 450 nm using ELISA reader within 15 min. A dual wavelength is recommended with reference filter of 600-650 nm.

CALCULATION OF RESULTS
1. Check Calibrator Factor (CF) value on the calibrator bottle. This value might vary from lot to lot. Make sure you check the value on every kit.
2. Calculate the cut-off value: Calibrator OD x Calibrator Factor (CF).
3. Calculate the Ab (Antibody) Index of each determination by dividing the O.D. value of each sample by cut-off value.

Example of typical results:
Calibrator mean OD = 0.8
Calibrator Factor (CF) = 0.5
Cut-off Value = 0.8 x 0.5= 0.400
Positive control O.D. = 1.2
Ab Index = 1.2 / 0.4 = 3
Patient sample O.D. = 1.6
Ab Index = 1.6 / 0.4 = 4.0

QUALITY CONTROL
The test run may be considered valid provided the following criteria are met:
1. The O.D. of the Calibrator should be greater than 0.250.
2. The Ab Index for Negative control should be less than 0.9.
3. The Ab Index for Positive control should be greater than 1.2.

INTERPRETATION
The following is intended as a guide to interpretation of MA test results; each laboratory is encouraged to establish its own criteria for test interpretation based on sample populations encountered.

Antibody Index Interpretation
<0.9 No detectable MA by ELISA.
0.9-1.1 Borderline positive. Follow-up testing is recommended if clinically indicated.
>1.1 Detectable MA by ELISA.

LIMITATIONS OF THE TEST
1. The test results obtained using this kit serve only as an aid to diagnosis and should be interpreted in relation to the patient's history, physical findings and other diagnostic procedures.
2. Lipemic or hemolyzed samples may cause erroneous results.

PERFORMANCE CHARACTERISTICS
1. Sensitivity and Specificity
113 patient sera were tested by this MA ELISA and a reference ELISA method. 18 sera were positive and 90 were negative by both methods (96% agreement). The results are summarized below:

<table>
<thead>
<tr>
<th>Serum No.</th>
<th>of Replicates</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>1.67</td>
<td>0.096</td>
<td>5.7</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0.84</td>
<td>0.079</td>
<td>9.1</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>0.23</td>
<td>0.016</td>
<td>6.9</td>
</tr>
</tbody>
</table>

2. Precision

Intra-Assay Study

<table>
<thead>
<tr>
<th>Serum</th>
<th>No. of Replicates</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1.54</td>
<td>0.118</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.81</td>
<td>0.074</td>
<td>9.1</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.20</td>
<td>0.021</td>
<td>10.5</td>
</tr>
</tbody>
</table>